Reunanylityslause

Wikipediasta
Siirry navigaatioon Siirry hakuun

Reunanylityslause on topologiaan liittyvä seuraava tulos: Olkoon topologinen avaruus, osajoukko yhtenäinen ja . Jos kohtaa sekä :n että :n, niin kohtaa myös :n reunan . [1]

Merkitään ja . Jos , niin . Sisäpisteen ja ulkopisteen määritelmästä seuraa ja oletuksista seuraa . Nyt . Koska joukot ja ovat erillisiä, epätyhjiä ja :ssä avoimia, niin on epäyhtenäinen. Tämä on ristiriita oletusten kanssa, joten täytyy päteä .

Vaihtoehtoinen todistus:

Tehdään vastaoletus: joukko ei kohtaa joukon reunaa. Täten

Olkoon

Tällöin .

Nyt vastaoletuksen, sulkeuman määritelmän ja säännön nojalla

Täten joukko separoituu, joten se ei ole yhtenäinen. Ollaan päädytty ristiriitaan. Täten alkuperäinen väite on tosi.

  1. Jussi Väisälä: Topologia II, s. 99. Helsinki: Limes ry, 1999. ISBN 951-745-185-7
Tämä matematiikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.