Besselin funktiot
Besselin funktiot ovat useissa erilaisissa tilanteissa vastaantuleva joukko erikoisfunktioita. Ne liittyvät usein differentiaali- tai osittaisdifferentiaaliyhtälöiden ratkaisemiseen sylinterikoordinaatistossa, mistä syystä niitä kutsutaan joskus myös sylinterifunktioiksi. Esimerkiksi rummun kalvon värähtely säteen suunnassa on kombinaatio Besselin funktioita. Tyypillinen esimerkki on myös taajuusmoduloidun signaalin spektri. Funktiot on nimetty preussilaisen tähtitieteilijän Friedrich Besselin mukaan.
Alun perin Besselin funktiot ovat Besselin differentiaaliyhtälön
ratkaisuja.[1] Osoittautuu, että tämän yhtälön ratkaisuja ei voida esittää alkeisfunktioiden avulla, joten ratkaisut kuuluvat erikoisfunktioihin. Ratkaisun yleinen muoto on
- ,
missä funktio on :s ensimmäisen lajin Besselin funktio ja funktio vastaavasti :s toisen lajin Besselin funktio ja kertoimet .
Ensimmäisen lajin Besselin funktiot
[muokkaa | muokkaa wikitekstiä]Ensimmäisen lajin Besselin funktio voidaan kirjoittaa potenssisarjana
Tässä esiintyvä funktio on myös erikoisfunktioihin kuuluva gammafunktio ja ! tarkoittaa kertomaa. Tilanteessa, jossa
- .
Jos on kokonaisluku, funktiot voidaan määritellä integraalina
- .
Besselin funktioille on voimassa muutamia rekursiokaavoja. Näiden käyttö on yleensä kätevää.
Toisen lajin Besselin funktiot
[muokkaa | muokkaa wikitekstiä]Toisen lajin Besselin funktiot tunnetaan myös Weberin funktioina tai Neumannin funktioina. Ne voidaan lausua trigonometristen funktioiden ja ensimmäisen lajin Besselin funktioiden avulla
ja kokonaislukuindeksille
Myös toisen lajin Besselin funktioille on voimassa
- .
Samoin yllä mainitut rekursiokaavat ovat voimassa toisen lajin funktioille sellaisenaan.
Hankelin funktiot
[muokkaa | muokkaa wikitekstiä]Aaltojen etenemistä tutkittaessa törmätään Hankelin funktioihin. Ne ovat kompleksisia funktioita, joiden reaaliosa on ensimmäisen ja imaginääriosa toisen lajin Besselin funktio. Näille ovat voimassa
Hankelin funktiot voidaan lausua ensimmäisen lajin Besselin funktioiden avulla ei-kokonaislukuindeksille
- .
Kokonaislukuindeksille yllä olevista kaavoista on laskettava . Negatiivisille :n arvoille
Lähteet
[muokkaa | muokkaa wikitekstiä]- ↑ Weisstein, Eric W.: CRC Concise Encylopedia of Mathematics, s. 198. USA: CRC Press, 2003.
Kirjallisuutta
[muokkaa | muokkaa wikitekstiä]- Jalava, Väinö: Johdatus funktionaalianalyysiin. (Moniste 95) Tampere: TTKK, 1983. ISBN 951-720-831-6
- Laasonen, Pentti: Matemaattisia erikoisfunktioita. (Moniste 261) Otaniemi: TKK, 1971.
Aiheesta muualla
[muokkaa | muokkaa wikitekstiä]- Tietopaketti Besselin funktioista (englanniksi)
- Wolfram Mathworld: Bessel Function of the First Kind (englanniksi)
- Wolfram Mathworld: Bessel Function of the Second Kind (englanniksi)