Ympyrä

Wikipediasta
(Ohjattu sivulta Ympyräkiekko)
Siirry navigaatioon Siirry hakuun
Ympyrä ja sen osia
Osa artikkelisarjaa

Ympyrä on geometriassa kaikkien niiden tason pisteiden joukko, joiden etäisyys annetusta pisteestä (ympyrän keskipisteestä) on yhtä suuri kuin ympyrän säde r. Kehän pisteeltä toiselle kulkevaa janaa kutsutaan jänteeksi. Halkaisija on jänne, joka kulkee keskipisteen kautta. Ympyrän pyörähdyskappale sen keskipisteen kautta kulkevan suoran ympäri on pallo.

Ympyrän voidaan ajatella olevan erikoistapaus ellipsistä, joka on ympyrän ohella yksi kartioleikkauskuvio.

Ympyräksi kutsutaan usein myös ympyrän kehän sisään jäävää tason osaa eli ympyräkiekon aluetta, joka koostuu pisteistä, joiden etäisyys keskipisteestä on pienempi tai yhtä suuri kuin säde. Muun muassa metristen avaruuksien topologiassa ja kompleksianalyysissä alueesta käytetään nykyisin yleensä termiä kiekko.[1]

Piirin ja halkaisijan suhde on vakio, pii, joka merkitään kreikkalaisella kirjaimella .

Ympyrän kehän pituus ja pinta-ala

[muokkaa | muokkaa wikitekstiä]

Ympyrän kehän (piirin) pituus saadaan kaavasta:

, jossa on ympyrän säde ja on vakio pii noin 3,14.

Voidaan myös ilmaista säde ja halkaisijan avulla, eli :

Ympyrän sisään jääneen alueen pinta-ala saadaan kaavasta:

, missä on ympyrän säde tai vastaavasti:
, jossa on ympyrän halkaisija.

Jos ympyrän kehän pituus tunnetaan, voidaan pinta-ala laskea kaavasta:

Jos ympyrän halkaisija ja kehän pituus tunnetaan, voidaan pinta-ala laskea (ilman lukua ) kaavasta:

Jos tarkastellaan vakiomittaisia sulkeutuvia käyriä, on ympyrä sellainen käyrän muoto, joka sulkee sisäänsä suurimman mahdollisen pinta-alan.

Matemaattisesti tämä isoperimetrisen epäyhtälön nimellä kulkeva tulos voidaan muotoilla seuraavasti. Olkoon sulkeutuvan, jatkuvan ja itseään leikkaamattoman tasokäyrän eli Jordanin käyrän pituus ja sen rajaaman äärellisen tasoalueen pinta-ala. Tällöin

missä yhtäsuuruus pätee silloin ja vain silloin, kun kyseessä on ympyrä.

Ympyrän kaari, sektori ja segmentti

[muokkaa | muokkaa wikitekstiä]

Ympyrän kaari tarkoittaa ympyrän kehän osaa.[2] Esim. sektori tai segmentti jakaa ympyrän kehän kahteen kaareen.

Ympyrän kaaren pituus saadaan jakamalla kaaren rajaavan keskuskulman asteluku 360 asteella ja kertomalla se tämän jälkeen ympyrän kehän pituuden kaavalla .

Ympyrän sektori tarkoittaa ympyrän kahden säteen ja niiden ympyrästä rajaaman kaaren sisälle jäävää aluetta.[2]

Ympyrän sektorin pinta-ala saadaan jakamalla sektorin rajaavien säteiden muodostaman keskuskulman asteluku 360 asteella ja kertomalla se tämän jälkeen ympyrän pinta-alan kaavalla .

Ympyrän segmentti tarkoittaa ympyrän jänteen ja sen ympyrästä rajaaman kaaren sisälle jäävää aluetta.

Ympyrän yhtälö kaksiulotteisessa reaaliavaruudessa

[muokkaa | muokkaa wikitekstiä]

Keskipisteen ja säteen avulla

[muokkaa | muokkaa wikitekstiä]

Olkoon piste (x0,y0) ympyrän keskipiste, r ympyrän säde ja piste (x,y) mikä tahansa koordinaatiston piste. Jokaisen ympyrän kehän pisteen etäisyys ympyrän keskipisteestä on ympyrän säde eli r. Kuvitellaan suorakulmainen kolmio, jonka terävinä kulmina on pisteet (x0,y0) ja (x,y). Kolmion hypotenuusan pituus eli pisteiden etäisyys on Pythagoraan lauseen mukaan

Koska etäisyyden tulee olla r, saadaan

Korottamalla yhtälö puolittain toiseen saadaan hieman kätevämpi muoto

Josta saadaan poistamalla sulut potensseista ympyrän yhtälön normaalimuoto:

, jossa a, b, c ja r ovat reaalilukuja:
[3]

Jos ympyrän keskipiste on pisteessä (0,0), ts. origossa, on ympyrän yhtälö

joka on parametrimuodossa:

Napakoordinaattiesitys origokeskiselle ympyrälle on yksinkertaisesti: r = vakio

Kun ympyrän yhtälö tunnetaan, voidaan sen pinta-ala ja kehän pituus laskea myös integroimalla. Lisäksi voidaan johtaa kaavat pallon tilavuudelle ja pinta-alalle.

Kolmen pisteen avulla

[muokkaa | muokkaa wikitekstiä]

Jos kolmen pisteen koordinaatit, esimerkiksi kolmion kärjet, ovat konsykliset ja merkitään ja , voidaan ympyrän yhtälö kirjoittaa determinantilla

[4]

joka on evaluoituna

[4]

missä

x:n kerroin saadaan matriisista

jättämällä termejä sisältävä sarake pois (vastaavasti :n suhteen) determinantista

ja

ja vakiotermi c

Ympyrän yhtälö voidaan esittää keskipistemuodossa

[4]

missä keskipisteen koordinaatit ovat

ja

sekä säde

[4]

Ympyrän kulmia

[muokkaa | muokkaa wikitekstiä]

Ympyrän kehäkulmaksi kutsutaan sellaista ympyrän kulmaa, jonka kärkipiste on ympyrän kehällä ja jonka molempien kylkien osana on jänne tai jonka toisen kyljen osana on jänne ja toinen kylki on tangentilla. Keskuskulma taas tarkoittaa sellaista ympyrän kulmaa, jonka kärki on ympyrän keskipisteessä. Tangenttikulma tarkoittaa kulmaa, joiden kyljet ovat tangenteilla.

Neljä ympyrää

[muokkaa | muokkaa wikitekstiä]
Neljä toisia sivuavaa ympyrää

Piirrettäessä neljä samanlaista ympyrää sivuamaan toisia siten, että ympyröiden keskipisteet muodostavat neliön, on ympyröiden väliin jäävän alueen (merkitty harmaalla) pinta-ala

,

missä r on kunkin ympyrän säde.[5]

Seitsemän ympyrää

[muokkaa | muokkaa wikitekstiä]
Seitsemän toisia sivuavaa ympyrää

Ympyrän ympärille voidaan piirtää tiiviiksi ryhmäksi kuusi muuta samanlaista ympyrää siten, että kukin lisätty ympyrä sivuaa kahta muuta ja keskusympyrää.

Mikäli ympäröivien ympyröiden säde on kaksi kertaa niin suuri kuin keskusympyrän säde r, ympäröivien ympyröiden määräksi tulee viisi. Jos ympäröivien ympyröiden säde on r/2, niitä mahtuu kuvioon kymmenen.[6]

Ympyrä ja neliö

[muokkaa | muokkaa wikitekstiä]
Ympyrä ja neliö

Mikäli ympyrällä ja neliöllä on viisi yhteistä pistettä kuvan osoittamalla tavalla, niin ympyrän säteen ja neliön sivun suhde on 5/8.[7]

Ympyrä ja paraabeli

[muokkaa | muokkaa wikitekstiä]
Paraabelien pisteet ovat yhtä kaukana ympyrästä ja x-akselista

Sellaisten pisteiden ura, jotka ovat yhtä kaukana ympyrästä ja x-akselista, on paraabeli.[8] Kuvioita on kaksi, ja niitä kuvaavat yhtälöt

  1. Kompleksianalyysi (sivu 13) users.jyu.fi. Viitattu 1.9.2010.
  2. a b Tammi: Matematiikan teoriakirja Kolmio
  3. Yngve Lehtosaari – Jarkko Leino: Matematiikka 10. Lukion laajempi kurssi. (6.1. Ympyrä, s. 152) Helsinki: Kirjayhtymä, 1971.
  4. a b c d Weisstein, Eric W.: Circumcircle (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
  5. Jukka Kangasaho, Jukka Mäkinen, Juha Oikkonen, Johannes Paasonen, Maija Salmela: Geometria (Pitkä matematiikka). (Tehtävän 224, s. 101, mukaan) WSOY, 2001. ISBN 951-0-24558-5
  6. Jukka Kangasaho ym. (Tehtävän 249, s. 107, mukaan).
  7. Metsänkylä, Y. ja Metsänkylä, R.: Matemaattiset tehtävät ylioppilastutkinnoissa 1969–1989. (36. painos, s. 15, 80) Jyväskylä, Gummerus, 1981. ISBN 951-20-1814-4
  8. Metsänkylä, Y. ja Metsänkylä, R.: Tehtävä 6, s. 15, 81.

Kirjallisuutta

[muokkaa | muokkaa wikitekstiä]

Aiheesta muualla

[muokkaa | muokkaa wikitekstiä]