Keskitetty neliöluku
Tämän artikkelin tai sen osan paikkansapitävyys on kyseenalaistettu. Voit auttaa varmistamaan, että kyseenalaistetut väittämät ovat luotettavasti lähteistettyjä. Lisää tietoa saattaa olla keskustelusivulla. Tarkennus: Onko tämä oikea suomenkielinen termi? Vai onko vakiintunutta suomenkielistä nimitystä edes olemassa? |
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
Keskitetty neliöluku on keskitetty kuvioluku, joka ilmoittaa pisteiden määrän sisäkkäisistä neliöistä koostuvassa kuviossa. Kuvassa on neljää ensimmäistä keskitettyä neliölukua vastaavat kuviot.
Kymmenen ensimmäistä keskitettyä neliölukua ovat 1, 5, 13, 25, 41, 61, 85, 113, 145 ja 181.[1] n:s keskitetty neliöluku saadaan kaavalla eli .
Ominaisuuksia
[muokkaa | muokkaa wikitekstiä]Jokainen keskitetty neliöluku paitsi 1 on kahden peräkkäisen neliöluvun summa. Kaikki keskitetyt neliöluvut ovat parittomia, koska kahdesta peräkkäisestä neliöluvusta toinen on aina parillinen ja toinen pariton.
Keskitetyt neliöluvut 1:tä lukuun ottamatta ovat sama joukko kuin hypotenuusat niissä Pythagoraan kolmikoissa, joiden pitempi kateetti eroaa hypotenuusasta yhdellä.[1] Esimerkiksi keskitettyä neliölukua 13 vastaa Pythagoraan kolmikko (5, 12, 13).
Osa keskitetyistä neliöluvuista on myös alkulukuja (5, 13, 41, 61, 113, …)[2] tai neliölukuja (1, 25, 841, 28 561, 970 225, …)[3].
Lähteet
[muokkaa | muokkaa wikitekstiä]- Centered Square Number – Wolfram MathWorld (englanniksi)
Viitteet
[muokkaa | muokkaa wikitekstiä]Monikulmioluvut | |
---|---|
Muita tasokuviolukuja: | |
Pyramidiluvut | |
Muut monitahokasluvut | |
Monikulmiolukuja koskevia tuloksia |