Fuhrmannin lause
Fuhrmannin lause[1][2] on Geometriassa jännenelikulmioita käsittelevän Ptolemaioksen lauseen yleistys syklisille kuusikulmioille.
Tilanteen kuvailu
[muokkaa | muokkaa wikitekstiä]Syklinen monikulmio muodostetaan merkitsemällä ympyrän kehältä kuusi pistettä, josta kaikki vierekkäiset pisteet yhdistetään toisiinsa janalla. Näin syntyy kuusikulmio, jolla on muihin kuusikulmioihin nähden joitakin erityispiirteitä jännenelikulmion tapaan. Syntynyt kuusikulmio on konveksi eli monikulmiolla on yksi avoin sisäosa, jossa kaikki kulmat ovat koveria. Jos kaksi muuta kuin kehän vierekkäiset pistettä yhdistää janalla, saadaan lävistäjiä joita on aina yhdeksän kappaletta. Kuusikulmiosta voidaan valita kolmella tapaa lävistäjä (keskilävistäjä), jonka kummallekin puolelle jää kaksi muuta kehäpistettä eli kuusikulmion kärkeä. Vierekkäiset pisteet yhdistäviä monikulmion sivuja kutsutaan vastakkaisiksi sivuiksi, sillä ne sijaitsevat aina oppositiossa toisiinsa nähden. Fuhrmann havaitsikin näiden keskilävistäjien ja vastakkaisten sivujen muodostamien yhdistelmien noudattavan laskennallista sääntöä, jota kutsutaan keksijänsä mukaan Fuhrmannin lauseeksi.
Väite
[muokkaa | muokkaa wikitekstiä]Olkoon konveksi ympyrän sisään piirretyn kuusikulmion (vertaa edelle selostettuun) sivut ja olkoon kuusikulmion lävistäjät ja valittu siten, että janoilla ja lävistäjällä ei ole yhteistä kuusikulmion kärkeä (keskilävistäjä ja vastakkaiset sivut), ja vastaavasti samoin on janoilla ja lävistäjällä sekä niin on myös janoilla ja lävistäjällä . Tällöin on lävistäjien tulolle on aina voimassa
Lähteet
[muokkaa | muokkaa wikitekstiä]Aiheesta muualla
[muokkaa | muokkaa wikitekstiä]- Mathworld: Fuhrmann's Theorem (englanniksi)
- Glasgow’n yliopisto: Lauseen todistus (englanniksi)