Wallisin kaavat ovat menetelmiä, joilla voidaan laskea piin likiarvoja mielivaltaisen tarkasti. Kaavat on johtanut englantilainen matemaatikko John Wallis [ 1] . Wallisin kaavojen mukaan:
(1)
∏
n
=
1
∞
2
n
2
n
−
1
⋅
2
n
2
n
+
1
=
lim
n
→
∞
(
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
6
5
⋅
6
7
⋅
…
⋅
2
n
2
n
−
1
⋅
2
n
2
n
+
1
)
=
π
2
{\displaystyle \prod _{n=1}^{\infty }{\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}=\lim _{n\to \infty }\left({\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot \ldots \cdot {\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)={\frac {\pi }{2}}}
(2)
lim
n
→
∞
(
n
!
)
2
⋅
2
2
n
(
2
n
!
)
n
=
π
{\displaystyle \lim _{n\to \infty }{\frac {(n!)^{2}\cdot 2^{2n}}{(2n!){\sqrt {n}}}}={\sqrt {\pi }}}
.
Wallisin kaavat pystytään todistamaan osittaisintegroinnin avulla.
Merkitään jokaiselle
n
∈
N
{\displaystyle n\in \mathbb {N} }
I
n
=
∫
0
π
2
sin
n
x
d
x
{\displaystyle I_{n}=\int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,{\text{d}}x}
a
n
=
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
6
5
⋅
6
7
⋅
…
⋅
2
n
2
n
−
1
⋅
2
n
2
n
+
1
{\displaystyle a_{n}={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot \ldots \cdot {\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}}
b
n
=
(
n
!
)
2
⋅
2
2
n
(
2
n
!
)
n
{\displaystyle b_{n}={\frac {(n!)^{2}\cdot 2^{2n}}{(2n!){\sqrt {n}}}}}
Tällöin
I
0
=
π
2
{\displaystyle I_{0}={\frac {\pi }{2}}}
ja
I
1
=
1
{\displaystyle I_{1}=1}
Jos
n
≥
2
{\displaystyle \scriptstyle n\geq 2}
, niin osittaisintegroimalla nähdään, että
I
n
=
−
cos
π
2
sin
n
−
1
π
2
+
cos
0
sin
n
−
1
0
−
∫
0
π
2
−
cos
x
(
n
−
1
)
sin
n
−
2
x
⋅
cos
x
d
x
{\displaystyle I_{n}=-\cos {\frac {\pi }{2}}\sin ^{n-1}{\frac {\pi }{2}}+\cos 0\sin ^{n-1}0-\int _{0}^{\frac {\pi }{2}}-\cos x(n-1)\sin ^{n-2}x\cdot \cos x\,{\text{d}}x}
=
(
n
−
1
)
∫
0
π
2
cos
2
x
sin
n
−
2
x
d
x
=
(
n
−
1
)
∫
0
π
2
(
1
−
sin
2
x
)
sin
n
−
2
x
d
x
{\displaystyle =(n-1)\int _{0}^{\frac {\pi }{2}}\cos ^{2}x\sin ^{n-2}x\,{\text{d}}x=(n-1)\int _{0}^{\frac {\pi }{2}}(1-\sin ^{2}x)\sin ^{n-2}x\,{\text{d}}x}
=
(
n
−
1
)
(
I
n
−
2
−
I
n
)
{\displaystyle =(n-1)(I_{n-2}-I_{n})}
Siispä saadaan rekursiivinen kaava
I
n
{\displaystyle \scriptstyle I_{n}}
:lle:
I
n
=
n
−
1
n
⋅
I
n
−
2
{\displaystyle I_{n}={\frac {n-1}{n}}\cdot I_{n-2}}
Tämän avulla nähdään, että
I
2
n
=
2
n
−
1
2
n
⋅
I
2
n
−
2
=
2
n
−
1
2
n
⋅
2
n
−
3
2
n
−
2
⋅
I
2
n
−
4
{\displaystyle I_{2n}={\frac {2n-1}{2n}}\cdot I_{2n-2}={\frac {2n-1}{2n}}\cdot {\frac {2n-3}{2n-2}}\cdot I_{2n-4}}
=
…
=
1
2
⋅
3
4
⋅
…
⋅
2
n
−
3
2
n
−
2
⋅
2
n
−
1
2
n
⋅
I
0
{\displaystyle =\ldots ={\frac {1}{2}}\cdot {\frac {3}{4}}\cdot \ldots \cdot {\frac {2n-3}{2n-2}}\cdot {\frac {2n-1}{2n}}\cdot I_{0}}
ja
I
2
n
+
1
=
2
n
2
n
+
1
⋅
I
2
n
−
1
=
2
n
2
n
+
1
⋅
2
n
−
2
2
n
−
1
⋅
I
2
n
−
3
{\displaystyle I_{2n+1}={\frac {2n}{2n+1}}\cdot I_{2n-1}={\frac {2n}{2n+1}}\cdot {\frac {2n-2}{2n-1}}\cdot I_{2n-3}}
=
…
=
2
3
⋅
4
5
⋅
…
⋅
2
n
−
2
2
n
−
1
⋅
2
n
2
n
+
1
⋅
I
1
{\displaystyle =\ldots ={\frac {2}{3}}\cdot {\frac {4}{5}}\cdot \ldots \cdot {\frac {2n-2}{2n-1}}\cdot {\frac {2n}{2n+1}}\cdot I_{1}}
Näin ollen
I
2
n
+
1
I
2
n
=
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
…
⋅
2
n
−
2
2
n
−
3
⋅
2
n
−
2
2
n
−
1
⋅
2
n
2
n
−
1
⋅
2
n
2
n
+
1
⋅
I
1
I
0
=
a
n
⋅
2
π
{\displaystyle {\frac {I_{2n+1}}{I_{2n}}}={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot \ldots \cdot {\frac {2n-2}{2n-3}}\cdot {\frac {2n-2}{2n-1}}\cdot {\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\cdot {\frac {I_{1}}{I_{0}}}=a_{n}\cdot {\frac {2}{\pi }}}
, eli
a
n
=
I
2
n
+
1
I
2
n
⋅
π
2
{\displaystyle a_{n}={\frac {I_{2n+1}}{I_{2n}}}\cdot {\frac {\pi }{2}}}
Koska
sin
2
n
+
2
x
≤
sin
2
n
+
1
x
≤
sin
2
n
x
{\displaystyle \sin ^{2n+2}x\leq \sin ^{2n+1}x\leq \sin ^{2n}x}
kaikilla
x
∈
[
0
,
π
2
]
{\displaystyle x\in \left[0,{\frac {\pi }{2}}\right]}
, niin
I
2
n
+
2
≤
I
2
n
+
1
≤
I
2
n
{\displaystyle I_{2n+2}\leq I_{2n+1}\leq I_{2n}}
. Siten
1
≥
I
2
n
+
1
I
2
n
≥
I
2
n
+
2
I
2
n
=
2
n
+
1
2
n
+
2
I
2
n
I
2
n
=
2
n
+
1
2
n
+
2
→
1
{\displaystyle 1\geq {\frac {I_{2n+1}}{I_{2n}}}\geq {\frac {I_{2n+2}}{I_{2n}}}={\frac {{\frac {2n+1}{2n+2}}I_{2n}}{I_{2n}}}={\frac {2n+1}{2n+2}}\to 1}
, kun
n
→
∞
{\displaystyle n\to \infty }
. Siis
lim
n
→
∞
a
n
=
lim
n
→
∞
I
2
n
+
1
I
2
n
⋅
π
2
=
π
2
{\displaystyle \lim _{n\to \infty }a_{n}=\lim _{n\to \infty }{\frac {I_{2n+1}}{I_{2n}}}\cdot {\frac {\pi }{2}}={\frac {\pi }{2}}}
, eli väite (1) on todistettu.
◻
{\displaystyle \Box }
Koska
b
n
+
1
2
=
b
n
2
⋅
(
2
n
+
2
)
2
(
2
n
+
1
)
2
⋅
n
n
+
1
{\displaystyle b_{n+1}^{2}=b_{n}^{2}\cdot {\frac {(2n+2)^{2}}{(2n+1)^{2}}}\cdot {\frac {n}{n+1}}}
ja
a
n
=
a
n
+
1
⋅
(
2
n
+
1
)
(
2
n
+
3
)
(
2
n
+
2
)
2
{\displaystyle a_{n}=a_{n+1}\cdot {\frac {(2n+1)(2n+3)}{(2n+2)^{2}}}}
, niin induktiotodistuksella nähdään helposti, että
b
n
2
=
2
n
+
1
n
⋅
a
n
{\displaystyle b_{n}^{2}={\frac {2n+1}{n}}\cdot a_{n}}
kaikilla n . Siten väite (2) seuraa väitteestä (1).
◻
{\displaystyle \Box }
↑ Lehtinen, Matti: Osittaisintegroinnin ihmeitä :
Wallisin ja Stirlingin kaavat [1]