Suppeneva sarja

Wikipediasta
Siirry navigaatioon Siirry hakuun

Sarjan summa määritellään sarjan äärellisten osasummien muodostaman lukujonon raja-arvona. Jos tällainen summa löytyy, sarja suppenee. Jos sarja ei suppene, on se hajaantuva sarja. Suppenemisen voi osoittaa määritelmän avulla tai suppenemistesteillä.

Määritelmä

[muokkaa | muokkaa wikitekstiä]

Sarja suppenee, jos sen osasummien jono suppenee, ts. jos s.e. . Tällöin S on sarjan summa ja merkitään

Sarjan suppenemiseen liittyviä lauseita

[muokkaa | muokkaa wikitekstiä]

Jos suppenee, niin

Suppenevalle sarjalle erotusta

sanotaan sarjan n:nneksi jäännöstermiksi.

Suppenevalle sarjalle

Jos ja , sekä , niin

Jos sarja suppenee ja sarja hajaantuu, niin summasarja hajaantuu. Jos molemmat sarjat ja hajaantuvat, niin niiden summasarja voi joko a)supeta tai b)hajaantua.

Lause 6. Cauchyn yleinen suppenemiskriterio sarjoille

[muokkaa | muokkaa wikitekstiä]

Sarja suppenee kohti s.e.

kaikilla aina kun

Itseisesti suppeneva sarja

[muokkaa | muokkaa wikitekstiä]

Määritelmä

[muokkaa | muokkaa wikitekstiä]

sarja suppenee itseisesti, jos sarja suppenee.

Jos suppenee, niin suppenee. Tällöin sarjoille pätee

Lauri Myrberg: Differentiaali- ja integraalilaskenta korkeakouluja varten osa 2, 1.-2. painos, Tampereen Kirjapaino-Oy Tamprint, 1978

Jouni Kankaanpää, Lauri Myrbeg, Jussi Väisälä, Hannu Honkasalo: Differentiaali- ja integraalilaskenta I.2