Ohutkalvon kasvatus

Wikipediasta
Siirry navigaatioon Siirry hakuun

Ohutkalvon kasvatuksella tarkoitetaan kaikkia niitä tekniikoita, joilla siirretään ohut materiaalikerros kasvatusalustalle (alustasta käytetään usein termiä substraatti). Ohutkalvon "ohuus" on suhteellinen käsite. Joillakin kasvatustekniikoilla (esimerkiksi ALD ja MBE, Molecular Beam epitaxy) päästään atomikerroksittain kasvattamaan kalvon paksuutta, mutta useimmilla menetelmillä pienin säädettävissä oleva paksuus on joitakin kymmeniä nanometrejä. Kalvojen paksuudesta puhuttaessa käytetään usein mittana ångströmiä. Ohutkalvojen kasvatustekniikat ovat kehittyneet 50-luvulta alkaen elektroniikkateollisuuden kehittyessä. Näitä tekniikoita on alettu yhä laajemmin soveltamaan myös muiden tuotteiden valmistuksessa. Nanoteknologia käyttää paljolti samoja valmistusmenetelmiä.

Ohutkalvoja käytetään optiikassa esimerkiksi heijastuksen poistokalvoina, elektroniikassa eriste- tai johdekalvoina, hohdekalvoina elektroluminesenssi- ja OLED-näytöissä, puolijohteissa, pakkauskalvoissa (esimerkiksi alumiinikalvo PET-muovikalvolla). Ohutkalvoja voidaan käyttää myös korroosion estossa tai passivointikerroksina parantamaan materiaalin happojen kestävyyttä tai vähentämään elimistöjen hylkimisefektiä.

Ohutkalvojen kasvatustekniikat jakaantuvat karkeasti kahteen ryhmään riippuen siitä, onko kasvatusprosessi pääosin kemiallinen vai fysikaalinen.

Kemialliset kalvonkasvatustekniikat

[muokkaa | muokkaa wikitekstiä]

Kemiallisessa kasvatuksessa virtaava lähtöaine (engl. precursor) aiheuttaa kemiallisen reaktion kiinteällä pinnalla muodostaen kiinteän aineen kerroksen. Jokapäiväinen esimerkki nokikerroksen muodostuminen kylmän kappaleen pinnalle, joka laitetaan nuotion liekkeihin. Koska virtaus peittää kiinteän kappaleen, kalvoa kasvaa joka puolelle ja kasvun suuntaus ei määräydy kovin tarkasti. Kemiallisella kalvonkasvatuksella tehdyt kalvot ovat lähtökohtaisesti varsin tasaisia, kasvunopeus on sama pinnan kaikilla osilla.

Kemiallinen kalvonkasvatus jakautuu kahteen osaan riippuen siitä, onko lähtöaine neste vai kaasu:

  • Galvaaninen pinnoitus, (engl. plating) perustuu nestelähtöaineisiin, usein metallisuolojen vesiliuoksiin. Jotkut pinnoitusprosessit toimivat vain liuoksissa olevilla reaktioaineilla, mitä käytetään tavallisesti jalometalleilla. Kaikista eniten käytetty kaupallinen prosessi sähkökemiallinen pinnoitus (galvanointi). Elektrolyysiä ei aikaisemmin juurikaan käytetty puolijohteiden valmistuksessa, mutta viime aikoina lisääntynyt kemiallismekaanisen hionnan hyödyntäminen on elvyttänyt kiinnostusta asiaan.

Fysikaaliset kalvonkasvatusmenetelmät

[muokkaa | muokkaa wikitekstiä]

Fysikaalisessa kalvonkasvatuksessa käytetään mekaanisia tai termodynaamisia keinoja kiinteänaineen ohutkalvon tuottamiseen. Hyvä esimerkki on huurteen muodostuminen. Koska useimpien teknisten materiaalien koossa pysyminen vaatii paljon energiaa ja kemiallisia reaktioita ei käytetä näiden energioiden säilyttämiseen, kaupalliset fysikaaliset kalvonkasvatusmenetelmät edellyttävät usein alhaisia prosessipaineita toimiakseen hyvin. Suurimman osan menetelmistä voidaan luokitella PVD (physical vapor deposition) -ryhmään.

Pinnoituksessa käytetty lähtöaine sijoitetaan sellaiseen energiakenttään, että partikkeleja alkaa irrota sen pinnalta. Lähtöaineen pinnan läheisyyteen asetetaan kylmempi pinta, joka sitoo partikkeleiden energia niiden saapuessa ja mahdollistaa kiinteän aineen kerroksen muodostumisen. Koko prosessi tehdään vakuumiastiassa, jossa partikkelit voivat siirtyä niin esteettä kuin mahdollista. Koska partikkelit pyrkivät kulkemaan suoraa liikerataa, niin näin muodostuneet kalvot ovat yleisesti kalvonkasvun suhteen yhdensuuntaisia.

Esimerkkejä fysikaalisesta kalvonkasvatuksesta:

  • Höyrystyspinnoituksessa kasvatusaineena käytettävä metalli kuumennetaan sulaksi, jotta sen höyrynpaine saadaan sopivalle tasolle. Tämä tehdään tyhjiössä, jotta höyry saavuttaisi substraatin pinnan reagoimatta tai törmäämättä muiden reaktioastian kaasufaasissa olevien aineiden kanssa. Tyhjiössä jää myös epäpuhtauksien määrä poistokaasuissa vähäiseksi. Rajoituksena pinnoituksessa on se, että kuumentavien pintojen höyrynpaineen pitää olla huomattavasti pienempi kuin itse pinnoitettavan materiaalin, jotta epäpuhtauksien määrä kasvatettavassa kalvossa jäisi vähäiseksi. Molekyylisuihkuepitaksi (MBE Molekular Beam Epitaxy)-kalvonkasvatus on höyrystysmenetelmän erikoistapaus.
    • Elektronisuihkuhöyrystin tulittaa elektronitykin korkeaenergiaisella suihkulla kohdemetallia kiehauttaen siitä pienen pisteen. Koska kuumennus ei ole tasaista, voidaan kasvattaa pienemmän höyrynpaineen omaavia materiaaleja. Säde on normaalisti taivutettu 270 °C, jotta varmistetaan tykin filamentti ei altistu suoraan höyrystyvälle materiaalivirralle. Tyypillinen kalvonkasvatusnopeus elektronisuihkuhöyrystyksessä vaihtelee välillä 1–10 nanometriä sekunnissa.
  • Sputterointi perustuu jalokaasujen kuten argonin plasmalla tapahtuvaan kasvatusmateriaalin (kohtion) pommitukseen, josta irtoaa muutamia atomeja kerrallaan. Kohtio voidaan pitää suhteellisen kylmänä, koska kyseessä ei ole höyrystysprosessi, minkä vuoksi sputteri on joustavimpia kalvonkasvatuslaitteita. Alhainen lämpötila käytettäessä yhdisteitä tai seoksia, jossa toisella materiaalilla olisi taipumus höyrystyä eri nopeudella. Sputteroitu kalvo kasvaa pääasiassa tasaisesti eri pinnan suunnille.
  • Pulssitettu laser-avusteinen kalvonkasvatus toimii eroosioperiaatteella. Lasersäteen pulssi kohdistetaan kasvatusmateriaalin pintaan, josta irtoaa materiaalia plasmatilassa. Tämä plasma yleensä kaasuuntuu ennen kuin se kohtaa substraatin.

Muut kalvonkasvatusprosessit

[muokkaa | muokkaa wikitekstiä]

Jotkut menetelmät jäävät kahden edellä mainitun menetelmän ulkopuolelle, kun ne ovat yhdistelmiä sekä kemiallisista että fysikaalisista menetelmistä.

  • Reaktiivisessa sputteroinnissa plasmaa muodostavaan jalokaasuun sekoitetaan pieni määrä muita kaasuja, kuten happea tai typpeä. Kun materiaali irtoaa plasman avulla se reagoi kaasun kanssa siten, että muodostuva kalvo on eri materiaalia kuin kohtio eli kohtion oksidia tai nitridiä.
  • Molekyylisuihkuepitaksissa (MBE) jonkin alkuaineen hidas virta kohdistetaan substraattiin siten että pintaan kasvaa kalvoa atomikerroksittain. Sellaisia yhdisteitä kuten galliumarsenidi kasvatetaan tavallisesti siten, että alkuaineita gallium ja arseeni suihkutetaan vuoron perään toistuvasti atomikerros kerrallaan, jolloin prosessi on välillä fysikaalinen ja välillä kemiallinen. Materiaalisuihku voidaan kehittää fysikaalisesti kuumennusuunin avulla tai kemiallisen reaktion avulla.
  • Topotaksi on epitaksia muistuttava erikoismenetelmä, jossa ohutkalvokiteiden kasvu on kolmidimensionaalista johtuen substraatin kiderakenteen ja kalvon kiderakenteen samankaltaisuuksista.

Suomalainen MBE-laitteiden valmistaja

[muokkaa | muokkaa wikitekstiä]