Brunt-Väisälä-taajuus
Ilmakehän dynamiikassa, meritieteissä ja geofysiikassa Brunt–Väisälä-taajuus on se taajuus, jolla pystysuunnassa poikkeutettu fluidi (neste tai kaasu) pyrkii stabiilissa ympäristössä värähtelemään. Taajuus on nimetty sen toisistaan riippumatta johtaneiden meteorologien, walesilaisen David Bruntin ja suomalaisen Vilho Väisälän mukaan.
Kaava yleisessä muodossaan
[muokkaa | muokkaa wikitekstiä]On osoitettavissa, että poikkeutettaessa osaa fluidista korkeussuunnassa ympäristöönsä nähden, muuttuu sen ja ympäristön välinen noste kaavan
mukaisesti, missä on poikkeutuksen suuruus, tiheys alkutilanteessa ja paikallisesti vallitseva painovoimakiihtyvyys. Tästä on edelleen toisen asteen differentiaaliyhtälö ratkaisemalla johdettavissa korkeuden muutokseksi
missä Brunt–Väisälä-taajuus N on
Jos on negatiivinen, on z':lla oskilloiva ratkaisu, ja N on tällöin oskilloinnin kulmataajuus. Jos taas on positiivinen, menee juurrettava negatiiviseksi, eikä yhtälöllä ole reaalista ratkaisua, so. ratkaisu ei oskilloi, vaan kasvaa rajatta (=labiili ympäristö).
Meteorologiassa
[muokkaa | muokkaa wikitekstiä]Kun ilmapakettia nostetaan stabiileissa olosuhteissa Ilmakehän rajakerroksessa, jäähtyy se adiabaattisesti ympäristöään kylmemmäksi. Negatiivinen noste vetää pakettia alemmaksi, ja inertian vuoksi se päätyy lähtötasoaan alemmaksi. Alaspäin liikkuessaan paketti lämpenee adiabaattisesti, ja alkaa nosteen vuoksi kohota. Kohoaminen jatkuu jälleen inertian vuoksi lähtötasoa ylemmäksi. Lopputuloksena paketti oskilloi molemmin puolin lähtötasoaan[1] yhtälön
mukaisesti, missä on potentiaalilämpötila, paikallinen painovoimakiihtyvyys ja korkeus. N ilmaisee värähtelyn taajuuden, ja sen yksikkö on rad/s[2]. Jos potentiaalilämpötila laskee korkeuden kasvaessa, saa juurrettava negatiivisen arvon. Oskillointia ei tällöin ole, vaan ilmakehän tilanne on labiili, ja ilmapaketti jatkaa alkusysäyksensä suuntaan. Jos tilanne on neutraali, ei potentiaalilämpö muutu korkeuden funktiona, ja N=0.
Esimerkiksi vuoren yli puhaltava tuuli voi stabiileissa olosuhteissa muodostaa jättöpuolelle vuoristoaaltoja, jotka oskilloivat Brunt–Väisälä-taajuudella[3].
Geofysiikassa ja akvaattisissa tieteissä
[muokkaa | muokkaa wikitekstiä]Lähellä jäätymispistettä veden tiheyden ja lämpötilan epälineaarinen muutos sekä meriveden suolaisuus voivat saada aikaan pystysuuntaisen kiertoliikkeen fluidissa yhtälön
mukaisesti, missä potentiaalitiheys on sekä suolaisuuden että lämpötilan funktio.
Lähteet
[muokkaa | muokkaa wikitekstiä]- ↑ Stull, Roland B.: Meteorology for Scientists and Engineers, s. 135. (2nd edition) Thomson Learning, 2000. ISBN 0-534-37214-7
- ↑ [1] AMS Glossary of Meteorology. American meteorological Society
- ↑ Stull, Roland B.: Meteorology for Scientists and Engineers, s. 215. (2nd edition) Thomson Learning, 2000. ISBN 0-534-37214-7