Tulon derivoimissääntö

Wikipediasta
(Ohjattu sivulta Tulosääntö)
Siirry navigaatioon Siirry hakuun

Tulon derivoimissääntö on matemaattinen kaava, jonka avulla voidaan laskea derivaatta funktiolle, joka sisältää derivoituvien funktioiden tulon.

Olkoot funktiot ja derivoituvia pisteessä . Tällöin funktio on derivoituva ja


.


Tulon derivoimissääntö voidaan kirjoittaa myös yksinkertaisempaan muotoon:


.


Todistetaan tulon derivoimissääntö derivaatan matemaattisen määritelmän, erotusosamäärän raja-arvon, avulla. Tämän määritelmän mukaan

.'


Olkoon funktio derivoituva, ja todistetaan että



Ilmaistaan yhtälö funktioiden ja avulla


Lisätään ja vähennetään termi yhtälöön ja järjestetään termit uudelleen:



Derivaatan määritelmän perusteella


ja

.


Sen lisäksi nyt pätee

,


jolloin yhtälöstä saadaan


.

Derivoidaan ƒ(x) = x2 sin(x). Koska x2:n derivaatta on 2x ja sin(x):n derivaatta on cos(x), niin tulon derivoimissääntöä käyttämällä saadaan ƒ '(x) = 2x sin(x) + x2cos(x).


Useamman kuin kahden funktion tulo

[muokkaa | muokkaa wikitekstiä]

Tulon derivoimissääntöä voidaan käyttää myös useamman kuin kahden funktion yhtälöille. Esimerkiksi kolmen funktion tulon derivaatta on


Korkeamman asteen derivaatat

[muokkaa | muokkaa wikitekstiä]

Sääntö voidaan myös yleistää Leibnizin yleinen sääntö avulla n:n asteen derivaatalle:

Katso myös binomilause and binomikerroin.